Accounting for Confirmation Bias in Crowdsourced Label Aggregation

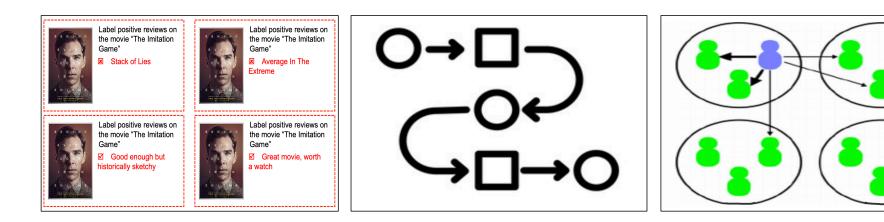
Meric Altug Gemalmaz, Ming Yin

Purdue University

IJCAI-21, Online, August 2021

Cognitive Biases in Crowdsourcing

Workers are prone to a wide range of biases!



In-batch annotation bias

Sequential bias

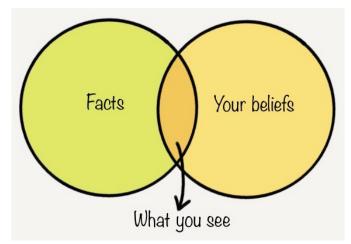
In-group bias

Department of Computer Science

2

Confirmation Bias

Another common type of cognitive bias is confirmation bias...



Favoring information that confirms previously existing beliefs and values!

Label Aggregation for Quality Control

Redundancy-based strategy is often deployed.

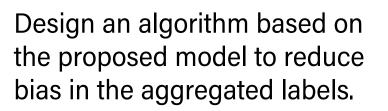
Majority Voting, Label Aggregation Algorithms;

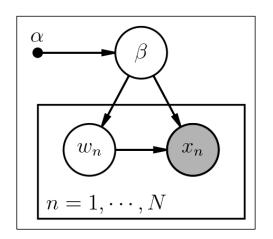
- GLAD [Whitehill et al., 2009]
- Multi [Welinder et al., 2010]
- VI-BP [Liu et al., 2012]
- Minimax [Zhou et al., 2012]
- ZenCrowd [Demartini et al., 2012]
- CBCC [Venanzi et al., 2014]

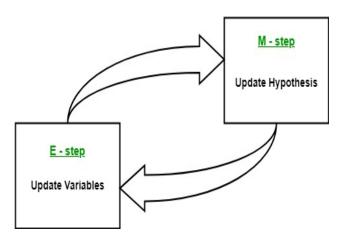
Methods seldom take worker biases into account!

Our Approach

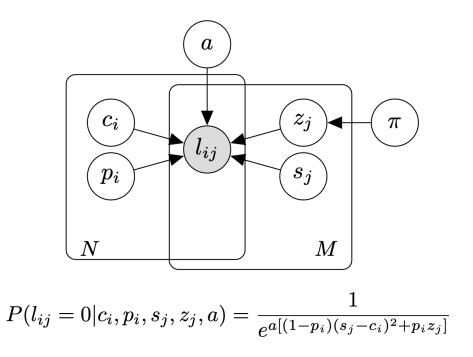
Model explicitly how worker's confirmation bias sneaks into annotations.







Probabilistic Model of Label Generation



Department of Computer Science

 $C_i \in [0, 1]$: the values of annotator i

 $\boldsymbol{S_j} \in [0,1]$: the values of information contained in task j

 $\boldsymbol{Z_{j}} \in \{0,1\}$: ground truth label of the task j

 $\mathbf{\Pi} = P(\mathbf{z}_j = 0)$: the prior probability for a task to have the preferable label

 $\mathbf{p_i} \in [0, 1]$: extent to which annotator **i** is subject to confirmation bias

 $\mathbf{a} \in [0, +\infty)$: annotators' base rate of providing the preferable label

Model Inference

We then use EM Algorithm to learn model parameters and make inference:

Expectation step, compute the posterior probabilities for the ground truth of each task \mathbf{z}_{j}

Maximization step, search for optimal parameter values to maximize the auxiliary function *Q*

$$p(z_j | \mathbf{L}, \mathbf{c}, \mathbf{p}, \mathbf{s}, a, \pi) \propto p(z_j | \pi) p(\mathbf{L} | z_j, \mathbf{c}, \mathbf{p}, \mathbf{s}, a)$$
$$\propto p(z_j | \pi) \prod_{i \in W_j} p(l_{ij} | c_i, p_i, s_j, z_j, a)$$

$$Q(\mathbf{c}, \mathbf{p}, \mathbf{s}, a, \pi) = E[\ln p(\mathbf{L}, \mathbf{z} | \mathbf{c}, \mathbf{p}, \mathbf{s}, a, \pi)]$$

= $E[\ln \prod_{j} (p(z_{j} | \pi) \prod_{i \in W_{j}} p(l_{ij} | c_{i}, p_{i}, s_{j}, z_{j}, a))]$
= $\sum_{j} E[\ln p(z_{j} | \pi)] + \sum_{l_{ij} \in \mathbf{L}} E[\ln p(l_{ij} | c_{i}, p_{i}, s_{j}, z_{j}, a)]$

Department of Computer Science

8

MTurk Experiment Task: Subjective Labeling

Label a statement as either "Opinion" or "Factual"

Task 5 out of 13

Read the following statement carefully and decide whether it is an opinion or a factual statement.

"Guns easily freed USA from British Forces."

Opinion	
Factual	
l don't know	
	Vext

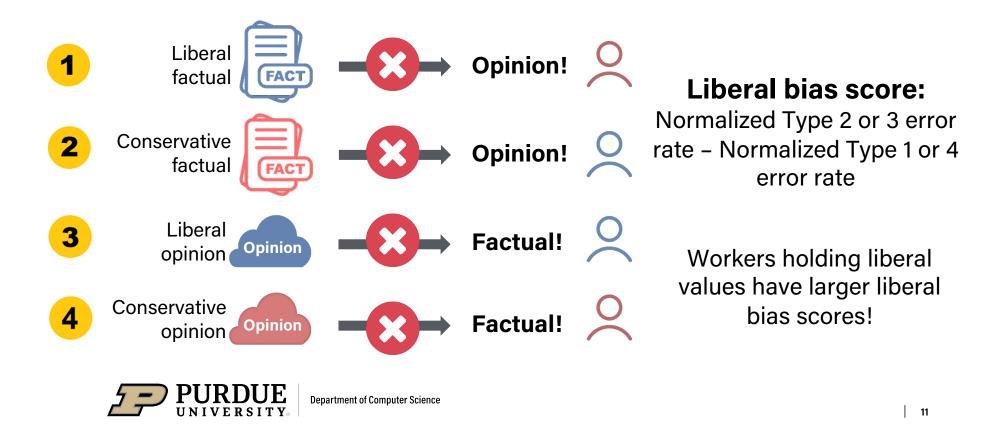
Department of Computer Science

12 statements (6 liberal + 6 conservative)

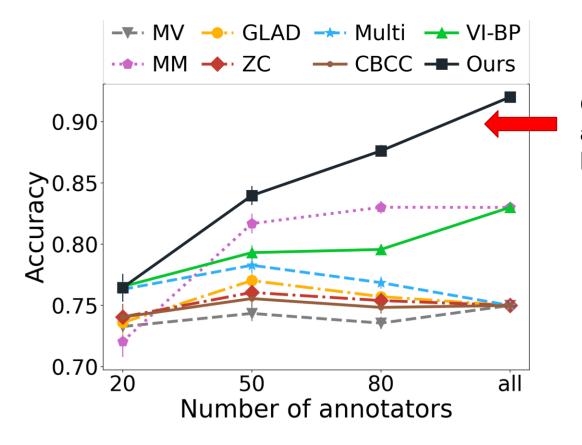
110 workers complete our HIT (57 liberal, 42 conservative, and 11 neutral)

110 × **12** = **1320** labels generated by workers (8% of the labels are IDK)

Do Workers Exhibit Confirmation Bias in This Task?



Can Our Algorithm Increase Aggregation Accuracy?



Our algorithm almost always achieves the highest accuracy!

| 13

The Impact of Confirmation Bias Degree

$$P(l_{ij} = 0 | c_i, p_i, s_j, z_j, a) = \frac{1}{e^{a[(1-p_i)(s_j-c_i)^2 + p_i z_j]}}$$

$$P(l_{ij} = 0 | c_i, p_i, s_j, z_j, a) = \frac{1}{e^{a[(1-p_i)(s_j-c_i)^2 + p_i z_j]}}$$

$$MV \leftarrow GLAD \leftarrow Multi \leftarrow VI-BP \\ MM \leftarrow ZC \leftarrow CBCC \leftarrow Ours$$

$$I.0$$

$$O_{0.1}^{0.5} 0.5$$

$$O_{0.1}^{0.5} 1.0 2.0 4.0$$

$$Beta Value$$

$$P(l_{ij} = 0 | c_i, p_i, s_j, z_j, a) = \frac{1}{e^{a[(1-p_i)(s_j-c_i)^2 + p_i z_j]}}$$

The Impact of the Distribution of Worker's Values

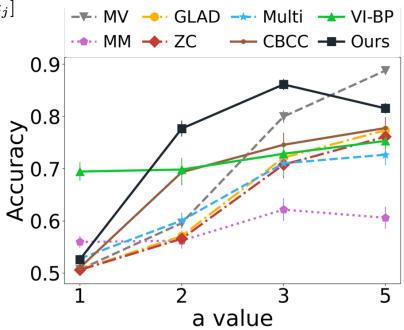
$$P(l_{ij} = 0 | c_i, p_i, s_j, z_j, a) = \frac{1}{e^{a[(1-p_i)(s_j-c_i)^2+p_i z_j]}} \qquad \text{MV} \quad \text{GLAD} \quad \text{Multi} \quad \text{VI-BP} \\ \text{MM} \quad \text{ZC} \quad \text{CBCC} \quad \text{Ours} \\ \text{MM} \quad \text{M} \quad \text{CC} \quad \text{M} \quad \text{M} \quad \text{M} \quad \text{M} \quad \text{M} \quad \text{CC} \quad \text{CBCC} \quad \text{Ours} \\ \text{MM} \quad \text{M} \quad \text{CC} \quad \text{M} \quad \text{M} \quad \text{M} \quad \text{M} \quad \text{CC} \quad \text{M} \quad \text{$$

The Impact of Base Rate of the Preferable Label

$$P(l_{ij} = 0 | c_i, p_i, s_j, z_j, a) = \frac{1}{e^{a[(1-p_i)(s_j - c_i)^2 + p_i z_j]}}$$

25 workers, a ∈ {1, 2, 3, 5}

 The larger a is, the base chance for workers to provide the preferable label is lower



Department of Computer Science

16

Summary

- We propose a new label aggregation method that accounts for a worker's cognitive bias (confirmation bias).
- We evaluate the effectiveness of our approach through both MTurk experiment and simulation, and showed that it has the largest advantage when the workers exhibit more confirmation bias and when the distribution of workers' values is more dispersed or even polarized.
- Shows that accounting for cognitive biases can greatly improve label aggregation accuracy!

Scan the code to check out our paper!

